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Abstract. With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration 15 

(ET) at high spatial and temporal resolutions becomes increasingly critical for water management and sustainability. 

However, estimating ET from satellite for precise water resources management is still challenging due to the limitations in 

both existing ET models and satellite input data. Specifically, the process of ET is complex and difficult to model, and 

existing satellite remote sensing data could not fulfill high resolutions in both space and time. To address the above two 

issues, this study presented a new high spatiotemporal resolution ET mapping framework, i.e., BESS-STAIR, which 20 

integrates a satellite-driven water-carbon-energy coupled biophysical model BESS (Breathing Earth System Simulator) with 

a generic and fully-automated fusion algorithm STAIR (SaTallite dAta IntegRation). In this framework, STAIR provides 

daily 30-meter multispectral surface reflectance by fusing Landsat and MODIS satellite data to derive fine-resolution leaf 

area index and visible/near-infrared albedo, all of which, along with coarse-resolution meteorological and CO2 data, are used 

to drive BESS to estimate gap-free 30-m resolution daily ET. We applied BESS-STAIR from 2000 through 2017 in six areas 25 

across the U.S. Corn Belt, and validated BESS-STAIR ET estimations using flux tower measurements over 12 sites (85 site-

years). Results showed that BESS-STAIR daily ET achieved an overall R2 = 0.75, with RMSE = 0.93 mm d-1 and relative 

error = 27.9% when benchmarked with the flux measurements. In addition, BESS-STAIR ET estimations well captured the 

spatial patterns, seasonal cycles, and interannual dynamics in different sub-regions. The high performance of the BESS-

STAIR framework is primarily resulted from: (1) the implementation of coupled constraints on water, carbon, and energy in 30 

BESS, (2) high-quality daily 30-m data from STAIR fusion algorithm, and (3) BESS’s applicability under all-sky conditions. 

BESS-STAIR is calibration-free and has great potentials to be a reliable tool for water resources management and precision 

agriculture applications for the U.S. Corn Belt, and even for worldwide given the global coverage of its input data. 
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1 Introduction  

Accurate field-level management of water resources urgently demands reliable estimations of evapotranspiration (ET) at 35 

high spatial and temporal resolutions. ET is the sum of water loss from soil surface through evaporation and that from plant 

components through transpiration, and ET at cropland is usually considered as crop water needs (Allen et al., 1998). ET 

consumes up to 90% of total water inputs (precipitation plus irrigation) in agro-ecosystems in the Western and Midwestern 

United States (Irmak et al., 2012). In the U.S. Corn Belt, increasing vapor pressure deficit (VPD) and drought sensitivity has 

been recognized as severe threats to future crop security (Lobell et al., 2014; Ort and Long, 2014). The vulnerability to 40 

drought in this region is further exacerbated by elevated rates of grass-to-crop conversion and expansion of irrigated areas 

(Brown and Pervez, 2014; Wright and Wimberly, 2013). Furthermore, precision water resources management requires 

capacity to account for spatial heterogeneity and to guide real-time decision-making (USDA, 1997). Accordingly, reliable 

tools are urgently needed to estimate, map and monitor the total amount and spatial and temporal variations of cropland ET. 

 45 

One critical requirement for the accurate estimations of ET at high spatiotemporal resolutions is reliable and advanced 

satellite-based models. This is challenging because the process of ET is complex and difficult to model. ET results from 

competitions between atmospheric water demand and soil water supply, and it is also regulated by plants through canopy 

development and stomatal behaviors in order to optimize their water, carbon and energy use strategies (Katul et al., 2012; 

Wang and Dickinson, 2012). A large number of satellite-based ET estimation methods have been developed based on 50 

different theories and techniques. In general, they can be grouped into many categories: statistical or machine learning 

methods (Jung et al., 2010; Lu and Zhuang, 2010), water balance methods (Pan et al., 2012; Wan et al., 2015), energy 

balance methods (Anderson et al., 1997; Su, 2002), triangular or trapezoid space methods (Jiang and Islam, 1999; Li et al., 

2009), Priestley–Taylor methods (Fisher et al., 2008; Miralles et al., 2011), and Penman–Monteith methods (Mu et al., 2011; 

Yebra et al., 2013). Kalma et al. (2008), Li et al. (2009) and Zhang et al. (2016) have provided detailed reviews on the pros 55 

and cons of different remote sensing approaches. 

 

Given the complexity of the ET process, we argue that a reliable ET model should include both necessary biophysical 

processes and high-quality multi-source observations to constrain ET estimations (Loew et al., 2016). While remote sensing-

based approaches tend to focus on constraints from various satellite data, land surface models (LSMs) are proficient to 60 

include processes that account for interactions between environment and plant structure and functions. Given the gaps 

between remote sensing and LSMs, a distinct ET model, the Breathing Earth System Simulator (BESS), was developed 

(Jiang and Ryu, 2016; Ryu et al., 2011). Different from the above-mentioned remote sensing models, BESS is a biophysical 

model, which adopts modules commonly-implemented in land surface models but uses various satellite remote sensing data 

as direct inputs. Specifically, BESS is a two-leaf water-carbon-energy coupled model driven by environmental and 65 

vegetation variables derived from multi-source satellite data. As the energy cycle, carbon cycle and water cycle are jointly 

modeled and mutually constrained in BESS, it has produced a series of high-quality global long-term (2000-2017) products, 
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including the 5-km resolution global radiation (Rg) and photosynthetically active radiation (PAR) and diffuse PAR products 

(Ryu et al., 2018), and 1-km resolution gross primary productivity (GPP) and ET products (Jiang and Ryu, 2016), which 

enables tracking crop growth and yields too (Huang et al., 2018). In particular, the 1-km resolution BESS ET product is able 70 

to capture the total amount and spatial and temporal variations in arid/semi-arid areas like Australia (Whitley et al., 2016, 

2017), California (Baldocchi et al., 2019) and Northwestern China (Wei et al., 2019). The fidelity of coarse-resolution BESS 

ET product suggests its potential at fine resolutions. 

 

The other critical requirement for accurate estimations of ET at high spatiotemporal resolutions is satellite input data at high 75 

resolutions in both space and time. This is challenging because existing satellite missions cannot satisfy the two conditions 

simultaneously. Data fusion techniques, which take multi-sensor data to generate fusion data with high resolutions in both 

space and time, provide a possible and scalable solution. Several such algorithms have been developed over the past decade 

(Gao et al., 2006; Houborg and Mccabe, 2018; Zhu et al., 2010), and they have been successful for localized applications 

(Gao et al., 2017; Gómez et al., 2016; Wu et al., 2015). Notably, energy balance and thermal-based ET models such as 80 

ALEXI/DisALEXI and SEBS have been combined with the fusion algorithm such as STARFM and ESTARFM to generate 

daily 30-m ET estimations with favourable performance at several sites (Anderson et al., 2018; Cammalleri et al., 2013; Li et 

al., 2017; Ma et al., 2018). 

 

Here we propose and present a new ET estimation framework that combines BESS with a novel fusion algorithm SaTallite 85 

dAta IntegRation (STAIR) (Luo et al., 2018), for accurate ET estimation at both high resolution in time and space. BESS has 

demonstrated its high performance in estimating ET at medium to coarse resolutions, but the major obstacle of moving 

BESS’s ET estimation to finer resolutions is the lack of key vegetation status variables at higher spatial resolutions, 

including leaf area index (LAI), and visible and near-infrared albedo (αVIS and αNIR). In BESS, these surface information are 

critical to resolving spatial heterogeneity, while environmental information such as radiation, temperature, humidity and CO2 90 

concentration are relatively homogeneous. To cope with the absence of high spatiotemporal resolution vegetation data, we 

propose to couple STAIR with BESS. STAIR is a genetic and fully-automated fusion algorithm to generate cloud-/gap-free 

surface reflectance product in high spatiotemporal resolution (Luo et al., 2018). Instead of manually selecting image pairs 

adopted by most other data fusion algorithms, STAIR automatically takes full advantage of time-series of daily coarse-

resolution images and fine-resolution but less frequent images. Moreover, STAIR’s high efficiency in computation allows 95 

scalability for large scale productions, which enable this new framework to deliver daily 30-m ET at regional and decadal 

scales. 

 

The objective of this study is to address a fundamental issue in agro-ecological science and applications: lack of high 

spatiotemporal gap-free ET data for decision-making. We implemented a new ET estimation framework BESS-STAIR and 100 

tested it at six study areas across the U.S. Corn Belt from 2000 to 2017. This is the first attempt to couple a satellite-driven 
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LSM with data fusion technique to provide daily 30m-resolution ET estimations at regional and decadal scales. While 

existing frameworks retrieve clear-sky ET from satellite-observed LST and fill ET gaps for cloudy-sky days, BESS-STAIR 

simulates all-sky ET and LST as a result of crop biophysical properties. This manner has more referential significance for 

crop modeling studies and has potential of breaking a new path to agro-ecological science and applications. We conducted 105 

comprehensive evaluation on the BESS-STAIR ET estimations with regards to the overall performance, spatial patterns, 

seasonal cycles and interannual dynamics, benchmarked on the ET observations from 12 eddy-covariance flux towers across 

the U.S. Corn Belt. The paper also discussed on the performance, advantages, limitations and potential improvements of the 

BESS-STAIR ET framework. 

 110 

2 Materials and methods  

 
Figure 1. The BESS-STAIR framework. The BESS ET estimation model and the STAIR data fusion algorithm are 

highlighted in green boxes. Blue boxes are satellite data, yellow boxes are ancillary data, and red boxes are key inputs to 

BESS. The output of BESS-STAIR is the 30-m resolution daily ET highlighted in white box. 115 

 

BESS-STAIR estimates cropland ET at 30-m resolution at daily interval (Figure 1). BESS is driven by environmental 

variables (radiation, temperature, humidity, and CO2 concentration), plant structural variables (LAI, αVIS and αNIR), and plant 

functional variables (peak maximum carboxylation rate at 25 °C (peak Vcmax25) and Ball-Barry coefficients, for C3 and C4 

plants, respectively). Among these key inputs, LAI, αVIS and αNIR characterize crop canopy structure, which are usually very 120 
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heterogeneous. In the global BESS ET product (Jiang and Ryu, 2016), these vegetation variables are derived from MODIS 

satellite data at 1-km resolution; while in BESS-STAIR, they are derived from 30-m resolution surface reflectance fused 

from high spatial resolution Landsat data and high temporal resolution MODIS data by STAIR. 

 

2.1 The ET estimation model: BESS 125 

BESS is a sophisticated satellite-driven water-carbon-energy coupled biophysical model designed to continuously monitor 

and map water and carbon fluxes (Jiang and Ryu, 2016; Ryu et al., 2011). It is a simplified land surface model, including an 

atmosphere radiative transfer module (Kobayashi and Iwabuchi, 2008; Ryu et al., 2018), a two-leaf canopy radiative transfer 

module (De Pury and Farquhar, 1997), and an integrated carbon assimilation – stomatal conductance – energy balance 

module. Specifically, the Farquhar model for C3 and C4 plants (Collatz et al., 1992, 1991), the Ball-Berry model (Ball et al., 130 

1987), and the quadratic form of the Penman-Monteith equation (Paw U and Gao, 1988) are used for the simulation of 

carbon assimilation, stomatal conductance and energy balance, respectively. This carbon-water integrated module employs 

an iterative procedure to solve intercellular CO2 concentration, stomatal conductance and leaf temperature for sunlit and 

shade canopy. Instantaneous sunlit/shade GPP and sunlit/shade/soil ET and net radiation at Terra and Aqua overpass times 

are simultaneously estimated, followed by a temporal upscaling procedure to derive daily GPP and ET using semi-empirical 135 

cosine functions (Ryu et al., 2012). The Priestley-Taylor equation is used to compute daily potential ET (PET) based on 

daily net radiation and meteorological data. 

 

A unique feature of BESS is that BESS takes full advantages of atmospheric and land products derived from multi-source 

satellite data. By using MOD/MYD 04 aerosol products (Sayer et al., 2014), MOD/MYD 06 cloud products (Baum et al., 140 

2012), MOD/MYD 07 atmospheric profile products (Seemann et al., 2003), along with gap-free atmospheric data provided 

by MERRA-2 reanalysis products (Gelaro et al., 2017), BESS calculates direct/diffuse visible/near-infrared radiation 

components at 0.05° resolution. By coupling CO2 concentration derived from SCIAMACHY and GOSAT satellite data (Dils 

et al., 2014) with those from OCO-2 satellite data (Hammerling et al., 2012), as well as NOAA long-term field observations 

(www.esrl.noaa.gov/gmd/ccgg/trends/), BESS derives long-term continuous monthly CO2 concentration maps. Finally, in 145 

this study BESS uses air temperature and dew point temperature provided by ERA5 reanalysis products at 0.1° resolution 

(Hersbach and H., 2016). In addition to these environmental variables, BESS also highly relies on vegetation structural and 

functional variables. By using satellite-derived LAI, αVIS and αNIR, BESS quantifies the absorption of ultraviolet/visible/near 

infrared radiation by sunlit/shaded canopy through a canopy radiative transfer model. This model also upscales leaf level 

(Vcmax25) to sunlit/shade canopy, which is used in the Farquhar photosynthesis model. Vcmax25 is a parameter depending on the 150 

plant functional type (Bonan et al., 2011; Kattge et al., 2009), and its seasonal variation is empirically parameterized by LAI 

(Ryu et al., 2011). 
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2.2 The data fusion algorithm: STAIR 

STAIR is a generic and fully-automated method for fusing multi-spectral satellite data to generate high spatiotemporal 155 

resolution and cloud-/gap-free data (Luo et al., 2018). It fully leverages the complementary strengths in the high temporal 

resolution MCD43A4 nadir reflectance (daily but 500 m resolution) (Schaaf et al., 2002) and the high spatial resolution 

Landsat L2 nadir reflectance (30-m resolution but 16-day revisiting frequency) (Masek et al., 2006) time series data. STAIR 

first imputes the missing pixels using an adaptive-average correction procedure, and then employs a local interpolation 

model to capture finer spatial information provided by Landsat data, followed by a time-series refinement step that 160 

incorporates the temporal patterns provided by MODIS data. This strategy allows higher efficiency in missing-data 

interpolation as well as greater robustness against concurrently missed MODIS and Landsat observation, which is a common 

situation during continuous cloudy/snowy days. 

 

The algorithm starts from the imputation of the missing pixels (due to cloud cover or Landsat 7 Scan Line Corrector failure) 165 

in satellite images. For MODIS images, a Savitzky-Golay filter is first applied to reconstruct continuous time series. For 

Landsat images, a two-step approach is employed using both temporal and spatial information from clear-sky observations. 

First, a temporal interpolation through a linear regression is applied as the initial gap-filling, based on the whole time series 

of images throughout a year. Second, an adaptive-average correction procedure is applied to remove inharmonic spatial 

patterns between gap-filled and original data. The target image is partitioned into multiple segments, each of which contains 170 

one type of homogeneous pixels. The relative difference between a gap pixel and neighbourhood pixels of it within the same 

segment is calculated using clear-sky observations acquired in several dates close to the target image acquisition date. Based 

on the assumption that the relative difference remains roughly the same across different dates in a short time period (e.g., < 

2–3 weeks), such difference is used to correct the filled values of the gap pixel derived from temporal interpolation so that 

the spatial relationship between the gap-filled pixel and its neighbourhood pixels within the same segment is consistent with 175 

those in clear-sky observations. 

 

The STAIR fusion algorithm fully exploits the spatial and temporal information in the time series of gap-filled MODIS and 

Landsat images throughout the growing season (April - October). A nearest neighbour sampling is conducted for all the 

MODIS images to achieve the same image size, pixel resolution and projected coordinate system with Landsat images. 180 

Difference image is calculated for each pair of Landsat and resampled MODIS images, and a linear interpolation is applied 

to reconstruct the difference image for any given date when no Landsat image is available. Such difference image is used to 

correct the resampled MODIS image on that date and to generate a fused Landsat image. In this manner, the fused image 

captures the most informative spatial information provided by the high spatial resolution Landsat data and incorporates the 

temporal patterns provided by the high temporal resolution MODIS data without any user interference. The fusion algorithm 185 

is applied to the six Landsat bands: blue, green, red, near-infrared (nir), shortwave infrared 1 (swir1), and shortwave 

infrared-2 (swir2). 
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2.3 Derivation of BESS inputs from STAIR data 

At global scale, LAI, αVIS and αNIR can be obtained from MODIS and other satellite data, but for field-scale agricultural 190 

applications high spatial resolution data are needed to account for the spatial heterogeneity between fields or within a field. 

At this point, we employed two approaches to estimate 30-m resolution daily LAI from STAIR fused surface reflectance 

data: an empirical approach based on linear relationship with vegetation indices (VIs) and a mechanic approach based on 

inversion of a canopy radiative transfer model (RTM). 

 195 

First, we estimated LAI using the empirical approach, because of availability of field LAI measurements in the study area. 

We calculated four VIs calculated from STAIR-derived spectral reflectance: Wide Dynamic Range Vegetation Index 

(WDRVI), Green Wide Dynamic Range Vegetation Index (GWDRVI), Enhanced Vegetation Index (EVI), and Land Surface 

Water Index (LSWI) for corn and soybean, respectively (Eq. (1) – (3)). These four Vis were chosen because they utilized 

information from different band combinations.  200 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =
0.1𝜌𝜌𝑁𝑁 − 𝜌𝜌𝑅𝑅
0.1𝜌𝜌𝑁𝑁 + 𝜌𝜌𝑅𝑅

 (1) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
0.1𝜌𝜌𝑁𝑁 − 𝜌𝜌𝐺𝐺
0.1𝜌𝜌𝑁𝑁 + 𝜌𝜌𝐺𝐺

 (2) 

𝐸𝐸𝐸𝐸𝐸𝐸 = 2.5
𝜌𝜌𝑁𝑁 − 𝜌𝜌𝑅𝑅

𝜌𝜌𝑁𝑁 + 6𝜌𝜌𝑅𝑅 − 7.5𝜌𝜌𝐵𝐵 + 1 (3) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜌𝜌𝑁𝑁 − 𝜌𝜌𝑆𝑆𝑆𝑆1
𝜌𝜌𝑁𝑁 + 𝜌𝜌𝑆𝑆𝑆𝑆2

 (4) 

where ρB, ρG, ρR, ρN, and ρSW1 refer to the surface reflectance at blue, green, red, near-infrared, the first shortwave-infrared 

band, respectively. Subsequently, we used field measured LAI data collected using destructive method at Mead, Nebraska 

from 2001 through 2007 to build VI-LAI relationships (Gitelson et al., 2007). For each of the four VIs we build a linear 

regression between time series of VI and LAI for corn, soybean, and the combination of corn and soybean, respectively. At 

this point, the equation derived from the combination of corn and soybean was used for vegetation cover other than corn and 205 

soybean. Although this might cause bias for forest LAI estimation, it is not a concern in this study as we focused on crop ET 

only. We applied linear regressions to four VIs separately and averaged the four derived LAI as the final LAI estimation, 

with the expectation that such average would reduce uncertainty caused by individual VI-LAI relationship.  

 

Second, we inversed PROSAIL RTM using a look-up table (LUT) method. PROSAIL is an efficient and widely-used model 210 

to simulate canopy reflectance given a set of sun-object-view geometry, canopy structure, leaf biochemical, and soil optical 

parameters (Jacquemoud et al., 2009). It is a combination of the PROSPECT leaf hyperspectral properties model 

(Jacquemoud et al., 1996; Jacquemoud and Baret, 1990) and the SAIL canopy bidirectional reflectance model (Verhoef, 
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1984, 1985). PROSAIL is particularly suitable for grasslands and croplands (Darvishzadeh et al., 2008; Xu et al., 2019), and 

therefore used in this study. LUT is a robust and easy method to retrieve model parameters from observed canopy reflectance 215 

(Verrelst et al., 2018). It is based on the generation of simulated canopy reflectance database for a number of plausible 

combinations of model parameter value ranges, and the identification of parameter values in the database leading to the best 

agreement between simulated and observed canopy reflectance. LUT is particularly suitable for big data processing (Myneni 

et al., 2002), and therefore used in this study. 

 220 

We established a database by running PROSAIL with sampled parameter values listed in Table 1. For computation 

efficiency, we only sampled varied values for four parameters while others were fixed. These four free parameters, including 

LAI (10 values), fraction of vegetation cover (6 values), soil brightness (5 values) and chlorophyll content (4 values), were 

chosen because they have been identified as the most sensitive parameters in canopy radiative transfer models (Bacour et al., 

2002; Mousivand et al., 2014). Leaf inclination distribution function is also sensitive but we set fixed types "spherical", 225 

"planophile" and "plagiophile" for corn, soybean, and other biomes, respectively (Nguy-Robertson et al., 2012; Pisek et al., 

2013). The fixed values of other parameters were set according to literature (Baret et al., 2007; Feret et al., 2008; 

Jacquemoud et al., 2009). Solar zenith angle at satellite overpass time can be calculated so we did not set it as a free 

parameter. Instead, we built a set of databases with solar zenith angle values (°) of 20, 25, 30, 35, 40, 45 and 50, respectively, 

representing the range during growing season in the study area. In PROSAIL, specific absorption coefficients and refractive 230 

index of leaf material are pre-measured hyperspectral data from 400 to 2500 nm with 1 nm interval (Feret et al., 2008), we 

averaged them over wavelengths to match Landsat 7 bands and assumed differences of spectral ranges between Landsat 5, 

Landsat 7 and Landsat 8 have marginal influence on LAI retrieval. We did not use default soil spectrum in PROSAIL, but 

spatiotemporally averaged all cropland pixels spectral reflectance in April when no crop is planted across the study area to 

derive representative soil spectral reflectance. 235 

 

Table 1. Parameter values needed to establish the canopy reflectance database by PROSAIL. 

Parameters Values 
LAI (m2 m-2) 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8 
Fraction of vegetation cover (m2 m-2) 0, 0.2, 0.4, 0.6, 0.8, 1 
Soil brightness (a.u.) 0.01, 0.4, 0.8, 1.2, 1.6 
Chlorophyll content (ug cm-2) 0, 20, 40, 60 

Leaf inclination distribution function 
spherical for corn, 

planophile for soybean, 
plagiophile for others 

Structure coefficient (a.u.) 1.75 
Carotenoid content (ug cm-2) 0 
Equivalent Water Thickness (cm) 0.015 
Leaf Mass per area (g cm-2) 0.0075 
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Brown pigment content (a.u.) 0 
Hot spot parameter (a.u.) 0.1 
View zenith angle (°) 0 
Azimuth angle (°) 0 

 

To retrieve LAI, we compared STAIR-derived surface reflectance (RSTAIR) with records in the canopy reflectance database 

simulated by PROSAIL (RPROSAIL) pixel by pixel. We used root mean square error (RMSE) as the cost function which was 240 

defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑙𝑙
∑ [𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(λ) − 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿(λ)]2𝑙𝑙
λ=1 , (5) 

where λ = 1,2, … l indicates band number and l = 6 for STAIR. Ideally, the simulated reflectance in the database yielding the 

smallest RMSE can be considered as the best simulation, and the corresponding LAI value can be considered as the solution 

for the satellite pixel. However, in reality the solution might not be unique, because different parameter combinations could 

derive similar reflectance simulations and errors in both satellite and model could further amplify this problem (Verrelst et 245 

al., 2018). For this reason, we chose top 10% small RMSE simulations in the database and considered the average of 

corresponding LAI values as the final solution. The threshold 10% was decided by evaluating LUT-retrieved LAI against 

field-measured LAI at three Mead sites, and it was within a reasonable range from top 50 records to top 20% records 

suggested by previous studies (Duan et al., 2014; Weiss et al., 2000). 

 250 

 

We further employed semi-empirical equations to calculate αVIS and αNIR (Liang, 2001) from STAIR-derived spectral 

reflectance in six Landsat bands:  

𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉 = 0.443𝜌𝜌𝐵𝐵 + 0.317𝜌𝜌𝐺𝐺 + 0.240𝜌𝜌𝑅𝑅 (6) 

𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁 = 0.693𝜌𝜌𝑁𝑁 + 0.212𝜌𝜌𝑆𝑆𝑆𝑆1 + 0.116𝜌𝜌𝑆𝑆𝑊𝑊2 − 0.003 (7) 

where ρSW2 is the surface reflectance at the second shortwave-infrared band. CI was set 0.75 for herbaceous and 0.70 for 

woody plants according to the global mean value of different plant functional types (He et al., 2012). For C3 crops/grasses, 255 

forests, and C4 crops/grasses, peak Vcmax25 values were set 180, 60 and 45, respectively (Kattge et al., 2009; Zhang et al., 

2014). Ball-Berry slope and intercept are another two important parameters used in the stomatal conductance model, and 

their values were set 13.3 and 0.02 for C3 crops/grasses, 9.5 and 0.005 for forests, and 5.8 and 0.04 for C4 crops, 

respectively (Miner et al., 2017). Distributions of C3 and C4 crops were obtained from Crop Data Layer (CDL) data (Boryan 

et al., 2011).  260 

 

2.4 Evaluation of BESS-STAIR ET 

The BESS-STAIR ET estimations were evaluated against flux tower ET measurements in the U.S. Corn Belt. The U.S. Corn 

Belt (Figure 2) generally refers to  a region in the Midwestern United States that has dominated corn and soybean production 
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in the United States (Green et al., 2018), which currently produces about 45% and 30% of the global corn and soybean, 265 

respectively (USDA, 2014). The region is characterized by relatively flat land, deep fertile soils, and a high soil organic 

matter (Green et al., 2018). Most part of the U.S. Corn Belt has favorable growing conditions of temperature and rainfall. A 

majority of the croplands in the U.S. Corn Belt are rainfed, with a small portion in the west part relying on irrigation. 

 
Figure 2. Study areas. Red dots indicate 12 flux tower sites scattered in six areas across the U.S. Corn Belt. The background 270 

map indicates the percent each state contribute to the total national corn and soybean plantation area (USDA, 2018). 

 

A total of 12 cropland sites scattered in six areas across the U.S. Corn Belt are registered in the AmeriFlux or FLUXNET 

network with publicly-available ET data (Figure 2 and Table 2). These sites include both corn only and corn/soybean 

rotation sites and both rainfed and irrigated sites, covering typical cropping patterns in the U.S Corn Belt. All of them were 275 

used in this study to ensure the representativeness of the validation for the precision agriculture applications in this region. 

For six sites: US-Bo1 (Meyers and Hollinger, 2004), US-Bo2 (Bernacchi et al., 2005), US-Br1 (Prueger et al., 2003), US-

Br3 (Prueger et al., 2003), US-Ro2 (Turner et al., 2016) and US-SFP (Wilson and Meyers, 2007), level 2 half-hourly data 

were downloaded from the AmeriFlux website (http://ameriflux.lbl.gov/). For three sites: US-IB1 (Matamala et al., 2008), 

US-Ro1 (Griffis et al., 2010) and US-Ro3 (Griffis et al., 2010), standardized gap-filled level 4 daily mean data were 280 

downloaded from the Carbon Dioxide Information Analysis Center data archive website (https://mirrors.asun.co/climate-

mirror/cdiac.ornl.gov/pub/ameriflux/). For the other three sites (Suyker et al., 2004): US-Ne1, US-Ne2 and US-Ne3, 

standardized high-quality gap-filled daily mean data were downloaded from the FLUXNET2015 website 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). 

 285 

Table 2. Information of 12 flux tower sites used for validation. 
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ID Site Location Latitude Longitude Plant Irrigation Years Source 

1 US-Bo1 Bondville, IL 40.0062 -88.2904 corn/soybean N 2000-2008 AmeriFlux L2 
2 US-Bo2 Bondville, IL 40.0090 -88.2900 corn/soybean N 2004-2006 AmeriFlux L2 
3 US-Br1 Brooks Field, IA 41.9749 -93.6906 corn/soybean N 2005-2011 AmeriFlux L2 
4 US-Br3 Brooks Field, IA 41.9747 -93.6936 corn/soybean N 2005-2011 AmeriFlux L2 
5 US-IB1 Fermilab, IL 41.8593 -88.2227 corn/soybean N 2005-2007 AmeriFlux L4 
6 US-Ne1 Mead, NE 41.1651 -96.4766 corn Y 2001-2012 FLUXNET2015 

7 US-Ne2 Mead, NE 41.1649 -96.4701 corn/soybean Y 2001-2012 FLUXNET2015 

8 US-Ne3 Mead, NE 41.1797 -96.4397 corn/soybean N 2001-2012 FLUXNET2015 

9 US-Ro1 Rosemount, MN 44.7143 -93.0898 corn/soybean N 2004-2006 AmeriFlux L4 
10 US-Ro2 Rosemount, MN 44.7288 -93.0888 corn/soybean/clover N 2008-2016 AmeriFlux L2 
11 US-Ro3 Rosemount, MN 44.7217 -93.0893 corn/soybean N 2004-2006 AmeriFlux L4 
12 US-SFP Sioux Falls, SD 43.2408 -96.9020 corn N 2007-2009 AmeriFlux L2 
 

By comparing with eddy covariance ET, we evaluated three ET estimations: BESS-STAIR with VIs-based LAI, BESS-

STAIR with RTM-based LAI, and BESS-STAIR with MODIS LAI. MODIS LAI refers to MCD15A3H 500m resolution 4-290 

day composite LAI product downloaded from https://lpdaac.usgs.gov/tools/data-pool/. Since eddy covariance technique used 

by flux towers provides water flux observations in term of latent heat (LE) rather than ET, evaluations were conducted by 

comparing BESS-STAIR daily LE estimates with flux tower measurements. At this point, water flux can be simply 

converted from energy unit (LE, MJ m-2 d-1) to water unit (ET mm d-1) by dividing latent heat of vaporization which is a 

function of daily temperature (Henderson-Sellers, 1984). Flux tower measurements usually have an irregular and dynamic 295 

footprint at scales from 100-m to 1-km (Fu et al., 2014), but for simplicity, only 30-m resolution BESS-STAIR pixels 

containing the flux tower were used for the direct comparison. With regard to flux towers, measurements data were directly 

used without energy closure adjustment. For AmeriFlux level 2 data, half-hourly data were averaged to daily LE only if no 

gaps exist during the day to avoid sampling bias caused by missing data. For AmeriFlux level 4 data and FLUXNET2015 

data, gap-filled daily LE were used directly. 300 

 

3 Results  

3.1 Performance of STAIR LAI 

LAI is the key input of BESS. The accuracy of high-resolution LAI estimations determine the validity of high-resolution ET 

estimations. We evaluated VIs-based LAI and RTM-based LAI estimations derived from 30-m resolution STAIR fused 305 

surface reflectance data against field measurements. We also compared them with 500-m resolution MODIS LAI. Overall, 

STAIR-derived LAI agree well with measured LAI, with R2 > 0.85, RMSE < 0.8 and mean bias error (MBE) ≈ 0 (Figure 3). 

The RTM-based method which is calibration free yields same performance with VIs-based method which requires 

substantial field measurements to build empirical relationships. Misclassification of CDL data between corn and soybean is 
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an important uncertainty source since both methods rely on crop types. During 2001 – 2007, 4 out of 21 site years (19%) 310 

over the three Mead sites were misclassified. By using the correct classification (not shown), the accuracy of LAI 

estimations reach R2 = 0.90 and RMSE = 0.62 for VIs-based method and R2 = 0.89 and RMSE = 0.68 for RTM-based 

method. By comparison, coarse-resolution MODIS LAI has relatively large errors, especially a negative bias (R2 = 0.55, 

RMSE = 1.68 and MBE = -0.97).  

 315 

 
Figure 3. Scatter plots between LAI measurements and LAI estimations. LAI measurements are destructively collected at 

three Mead sites. (a) – (b) STAIR-derived daily 30m-resolution LAI using VIs-based method and RTM-based method, 

respectively. (c) 500m-resolution MODIS LAI. 

 320 

3.2 Performance of BESS-STAIR ET 

BESS-STAIR daily LE estimations are in a highly aligned agreement with ground truth from the 12 flux-tower 

measurements (Figure 4). Across all of the 12 sites, BESS-STAIR LE with RTM-based LAI achieves an overall coefficient 

of determination (R2) of 0.75, root-mean-square error (RMSE) of 2.29 MJ m-2 d-1, relative error (E(|Xestimation-

Xmeasurement|)/E(Xmeasurement), RE) of 27.9%, and no overall bias. Figure 5 further exhibits its performance over all of the 12 325 

flux tower sites. R2 values range from 0.68 to 0.94 for corn, and 0.65 to 0.81 for soybean, highlighting the robustness of 

BESS-STAIR ET in the U.S. Corn Belt. BESS-STAIR LE with VIs-based LAI has similar performance (R2 = 0.75, RMSE = 

2.24 MJ m-2 d-1, and RE = 27.4%). Considering relatively small difference between BESS-STAIR using RTM-based LAI 

and that using VIs-based LAI, only the former one which is calibration-free is demonstrated in the following parts of this 

paper. By comparison, BESS LE with MODIS LAI shows larger errors (R2 = 0.65, RMSE = 2.50 MJ m-2 d-1, and RE = 330 

30.2%) comparing to BESS-STAIR.  
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Figure 4. Density scatter plots between LE measurements and LE estimations. LE measurements are from eddy covariance 

data collected at 12 flux towers. (a) and (b) BESS-STAIR LE with VIs-based LAI and RTM-based LAI, respectively. (c) 335 

500m-BESS LE with MODIS LAI. 

 

 
Figure 5. Site-by-site R2 between flux tower measured and BESS-STAIR estimated daily LE for corn and soybean, 

respectively. Crop type is from CDL data. 340 

 

Figure 6 shows the comparison between BESS-STAIR daily LE estimations and flux tower measurements over site years 

with least data gaps in measurements. Across all of the 12 sites, BESS-STAIR well captures the seasonal characteristics of 

LE observation from flux towers, as they exhibit generally consistent variations over the growing season. During the peak 

growing season (June, July and August), the radiation displays a dominant impact on measured daily LE, and it is reasonably 345 
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estimated by BESS-STAIR LE as well. In most cases, measured daily LE do not show strong and fast response to 

precipitation and/or irrigation, possibly due to the plentiful water storage in soil. Two exceptions are US-IB1 (2006) and US-

Ne3 (2012).  In case of US-IB1, no precipitation is available in August and little in July. As a result, daily LE measurements 

drop slightly quicker in August than other cases. Such anomaly is also depicted by BESS-STAIR LE. In case of US-Ne3, the 

severe drought in 2012 summer causes much lower LE values than the two adjacent irrigation sites (US-Ne1 and US-Ne2). 350 

BESS-STAIR LE also captures this considerable reduction, although a slight bias is observed in July. Figure 7 further 

demonstrates that the seasonal cumulative ET at three Mead sites calculated for both the flux tower measurements and 

BESS-STAIR estimations overall agree well throughout the peak growing season (June – September). 
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Figure 6. Seasonal time series of flux tower measured and BESS-STAIR estimated daily LE for 12 selected site years. Daily 355 

radiation and precipitation/irrigation are overlaid except for US-Br3. 

 

 
Figure 7. Multi-year mean cumulative ET for flux tower measurements and BESS-STAIR estimations at three Mead sites 

from 2001 through 2012. 360 

 

3.3 Spatiotemporal variations of BESS-STAIR ET 

 

 
Figure 8. Daily LE (MJ m-2 d-1) derived from (a) BESS-STAIR and (b) BESS-MODIS at Mead (41.1°N – 41.2°N, 96.4°W 365 

– 96.5°W) on August 1, 2012. 

 

BESS-STAIR daily ET demonstrates prominent spatial variations within the 0.1° × 0.1° area near the Mead site in Nebraska 

(Figure 8). Because of the impact of drought, central pivot irrigated fields characterized by round-shaped plots generally 

display higher values than surrounding croplands, and croplands have much higher values than grasslands. Variabilities of 370 
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ET between different crop fields and within individual crop fields are also observable. Such variabilities might be attributed 

to different irrigation strategies, varieties and/or other management. By comparison, though 500m-resoultuion BESS-

MODIS ET is able to capture the general spatial pattern, it has many mixed pixels and is unable to demonstrate gradients 

across field boundaries.  

 375 

 
Figure 9. Monthly mean BESS-STAIR ET at Brooks Field (41.9°N – 42.0°N, 96.65°W – 96.75°W) during the growing 

season of 2000, along with a CDL land cover map. The last subplot shows the average time series of corn, soybean and 

grass. 

 380 

Reasonable seasonal cycles for different land cover types are revealed by BESS-STAIR monthly ET averaged from gap-free 

daily estimations. An example time series of monthly ET maps at Brooks Field during the growing season of 2000 is shown 

in Figure 9. BESS-STAIR ET clearly captures the temporal dynamics throughout the growing season. All vegetation show 

low values (e.g., < 2 mm d-1) in April, May, September and October, but high values in June, July and August (JJA), with 

their peaks in July. Different seasonal cycles for corn, soybean and grass are also captured. Grass has the highest ET among 385 

the three vegetation types from April through June. Corn has higher ET than soybean in June and July, and decreases quickly 

since August. Soybean has the lowest ET from April through June, but has the highest ET in August. 
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Figure 10. Monthly mean BESS-STAIR ET in July at Rosemount (44.65°N – 44.75°N, 93.05°W – 93.15°W) from 2004 390 

throughout 2017, along with a scatter plot between regional-averaged monthly mean precipitation and ET in July over the 14 

years. Monthly precipitation maps are from PRISM (http://www.prism.oregonstate.edu/historical/). 

 

BESS-STAIR is also able to produce long-term ET estimations due to its high computational efficiency. Figure 10 shows an 

example time series of monthly ET in July at Rosemount from 2004 throughout 2017. The interannual variability is 395 

observable, although much smaller than seasonal variability (Figure 10). In this case, time-series of BESS-STAIR ET is in 

line with that of precipitation, as indicated by a significant linear correlation r = 0.73 (p < 0.005). It is also noted that ET is 

relatively steady given the high interannual variation in precipitation, and BESS-STAIR enables the investigation of such 

response at field scales. 
 400 

4 Discussions  

4.1 Performance of BESS-STAIR ET 

In this study, we have presented BESS-STAIR, a new framework for estimating croplands ET at field and daily scale, and 

we have demonstrated its high performance in the U.S. Corn Belt. The process-based biophysical model BESS, driven by 

30-m resolution vegetation-related variables derived from STAIR fused surface spectral reflectance data (Figure 3) and 405 

medium resolution environmental inputs derived from MODIS and other satellite data (Figure 1), is able to produce gap-free 
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ET and PET estimations on field-scale and at daily interval across space and time (Figure 4-7). Over the 12 sites across the 

U.S. Corn Belt (Figure 2), BESS-STAIR explains 75% variations in flux tower measured daily LE (Figure 4), with an 

overall RMSE of 2.29 MJ m-2 d-1 (equivalent to 0.93 mm d-1 or 26 W m-2), a 27.9% relative error, and stable performance 

across sties (Figure 5), as well as consistent seasonal dynamics with respect to flux tower measurements (Figure 6-7). 410 

 

The error statistics of BESS-STAIR are commensurate with previous high resolution croplands ET mapping studies. Typical 

RMSE values include 25 W m-2 by TSEB-DTD (Guzinski et al., 2014), 35 W m-2 by METRIC (Irmak et al., 2011), 62 W m-2 

by SEBS (McCabe and Wood, 2006), 0.60 mm d-1 by SSEBop (Senay et al., 2016), and 1.04 mm d-1 by SEBAL (Singh et 

al., 2008). Nevertheless, it is worth mentioning that those studies used original Landsat data and therefore suffered from 415 

considerably large data gaps. In contrast, BESS-STAIR uses daily Landsat-MODIS fusion data free from any gaps, which 

leads to temporally continuous ET estimation at the field level, thus can meet the requirements of precision agriculture. In 

addition, it is worth mentioning that BESS-STAIR is calibration-free and therefore is scalable. It also indicates that the 

accuracy of BESS-STAIR ET is likely to further improve by using locally optimized driving force or parameter values. 

 420 

BESS-STAIR is also comparable to other croplands ET mapping studies utilizing data fusion techniques. For example, 

DisALEXI-STARFM daily ET estimates were validated against the flux tower measurements over the three Mead sites 

(Yang et al., 2018). They reported error statistics around 1.2 mm d-1 RMSE and 29% relative error. BESS-STAIR’s 

performance at these three same sites shows an average of 0.89 mm d-1 RMSE and 25.3% relative error (Figure 11). At 

monthly scale, the average RMSE and relative errors are only 0.48 mm d-1 and 14.3% (Figure A1). In addition, BESS-STAIR 425 

has a potential to apply to any croplands around the world back to 1984 when both high spatial resolution data (e.g., 

Landsat/TM) and high temporal resolution data (e.g., NOAA/AVHRR) were available. 

 

 
Figure 11. Scatter plots between LE measurements and LE estimations at three sites US-Ne1, US-Ne2 and US-Ne3. 430 
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4.2 Scientific advantages of BESS-STAIR ET 

The efficacy of BESS-STAIR lies in several aspects. First, BESS is a water-carbon-energy coupled biophysical model. 

BESS employs atmospheric and canopy radiative transfer modules, carbon assimilation module, stomatal conductance 435 

module, and energy balance module (Jiang and Ryu, 2016; Ryu et al., 2011). BESS integrates the simulation of carbon cycle, 

water cycle and energy cycle in the same framework. Such carbon-water-energy coupling strategy realistically and 

coherently simulates plant physiology and their response to the environment, specifically the  carbon uptake and water loss 

by plants have been simulated synchronously through environmental constraints on stomatal conductance, with further 

constraints by available energy (Baldocchi and Meyers, 1998; Leuning et al., 1995). Many land surface models have already 440 

adopted such strategy and have successfully  simulated the evolution of terrestrial ecosystems (Ju et al., 2006; Sellers, 1997; 

Tian et al., 2010). However, this is not the case in commonly-used remote sensing models. Empirical methods, water balance 

methods, and Priestley–Taylor methods only focus on the water cycle. Energy balance methods, triangular space methods, 

and Penman–Monteith methods couple water cycle and energy cycle and consider ET in the context of energy partitioning. 

BESS, unlike these remote sensing models, constrains ET with regards to both energy requirement and carbon requirement, 445 

thanks to explicit modeling of radiative transfer and stomatal behavior processes. For above reasons, BESS-STAIR ET does 

not only achieve high accuracy (Figure A1 – A3), but also accurately capture responses to GPP, radiation, temperature, and 

humidity at daily scale (Table 3). Thus, BESS-STAIR has the potential to advance the understanding of crop responses to 

climate change through bridging remote sensing data and land surface models, which was first suggested by Sellers et al. 

(1997) more than 20 years ago. 450 

 

Table 3. BESS-STAIR captures the correct response of daily LE to GPP, radiation (Rg), temperature (Ta) and humidity 

(VPD) as compared to flux tower measurements over the three Mead sites from 2001 through 2012. The linear equation 

slopes and correlation coefficients between LE and other factors are similar in flux tower measurements and BESS-STAIR 

estimations, for both the whole growing season (April – October) or only peak growing season (June, July and August). For 455 

“flux tower” columns, Rg, Ta and VPD are from site measurements, while for “BESS-STAIR” columns, they are from 

satellite-derived coarse resolution inputs. 

Time period Relationship 
Flux tower BESS-STAIR 

Equation Correlation Equation Correlation 

Growing  
season 

(April –  
October) 

LE (MJ m-2 d-1) ~ GPP (gC m-2 d-1) y = 0.44x + 3.19 r = 0.86 (p < 0.01) y = 0.65x + 2.60 r = 0.90 (p < 0.01) 

LE (MJ m-2 d-1) ~ Rg (MJ m-2 d-1) y = 0.33x - 0.07 r = 0.56 (p < 0.01) y = 0.29x + 0.28 r = 0.51 (p < 0.01) 

LE (MJ m-2 d-1) ~ Ta (°C) y = 0.44x - 1.60 r = 0.67 (p < 0.01) y = 0.43x - 1.64 r = 0.54 (p < 0.01) 

LE (MJ m-2 d-1) ~ VPD (hPa) y = 0.32x + 4.10 r = 0.31 (p < 0.01) y = 0.44x - 2.50 r = 0.68 (p < 0.01) 
JJA 

(June,  
July,  

August) 

LE (MJ m-2 d-1) ~ GPP (gC m-2 d-1) y = 0.35x + 4.85 r = 0.76 (p < 0.01) y = 0.39x + 6.36 r = 0.63 (p < 0.01) 

LE (MJ m-2 d-1) ~ Rg (MJ m-2 d-1) y = 0.36x + 1.79 r = 0.58 (p < 0.01) y = 0.36x + 3.40 r = 0.77 (p < 0.01) 

LE (MJ m-2 d-1) ~ Ta (°C) y = 0.52x - 2.20 r = 0.46 (p < 0.01) y = 0.15x + 9.40 r = 0.28 (p < 0.01) 
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LE (MJ m-2 d-1) ~ VPD (hPa) y = 0.28x + 7.61 r = 0.32 (p < 0.001) y = 0.28x + 4.37 r = 0.30 (p < 0.001) 

 
The second strength is that BESS-STAIR is designed most sensitive to the variables which can be well-quantified from 

remote sensing data. BESS ET is most sensitive to solar radiation, followed by LAI (Ryu et al., 2011), as BESS ET is mainly 460 

constrained by net radiation and GPP. In most cases, solar radiation is the predominant component of net radiation, while 

LAI determines the capacity of radiation absorption and subsequently determines GPP. BESS explicitly computes radiation 

components in high accuracy by driving an atmosphere radiative transfer model FLiES using MODIS cloud, aerosol and 

atmospheric profile products. Globally, BESS-estimated solar radiation has its R2 about 0.85 and 0.95 for MODIS snapshots 

and 4-day averages, respectively (Ryu et al., 2018). On the other hand, BESS-STAIR calculates high spatiotemporal 465 

resolution LAI and albedo from fused surface reflectance data. Since Landsat and MODIS surface reflectance products are 

publicly-available and highly-reliable (Claverie et al., 2015; Masek et al., 2006), spatial heterogeneity and temporal 

dynamics of crop growing conditions are well captured (Figure 8). This study only uses reflectance data fused from Landsat 

and MODIS, but STAIR can be easily extended to further incorporate other types of data, such as Sentinel-2 (10 m 

resolution) and Planet Lab CubeSats (3 m resolution) (McCabe et al., 2017). By incorporating more high resolution 470 

observations, the relevance of reconstructed high resolution image series can be further improved.  

 

The third strength is that BESS-STAIR is able to perform under all-weather conditions. BESS-STAIR fills data gaps in 

surface reflectance, which has a smooth day-to-day variation even with changes in sky conditions (Liu et al., 2017). Based 

on filtered surface reflectance, LAI and albedo time series are well-reconstructed, and subsequently BESS-STAIR could 475 

directly work under all-weather condition. In this manner, BESS-STAIR has no need to fill cloudy-sky ET using clear-sky 

ET estimations, which is error prone because the empirically-filled ET estimations usually lack sophisticated process-level 

model constraints and thus can have large uncertainties. Figure 12 shows that the estimation errors of BESS-STAIR ET do 

not change significantly under different sky conditions, with low to high “sky clearness index” referring more cloudy to 

more clear sky conditions. 480 
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Figure 12. BESS-STAIR estimated daily LE has similar performance with varying sky clearness index (the ratio of incoming 

radiation on surface to that on top-of-atmosphere). The lower and upper boundaries of boxes refer to the first and third 

quartile of error statistics. The bars inside boxes refer to median values. The whiskers indicate 1.5 times of distance between 485 

the first and third quartiles. 

 

4.3 Limitations and future improvements of BESS-STAIR ET 

In this study, several inputs used by BESS have some limitations in terms of generality and accessibility. First, three plant 

functional parameters, peak Vcmax25, Ball-Barry slope and intercept are obtained from literatures, assuming constant given C3 490 

or C4 plant type. Other land surface models tend to use the similar strategy by assigning fixed values to a given plant 

functional type (PFT)  (Bonan et al., 2011; Kattge et al., 2009; Miner et al., 2017). The drawback of this strategy is the 

overlook of within-PFT variations and the feedback mechanisms between vegetation and its environment (Van Bodegom et 

al., 2014). These limitations might be mitigated by incorporating innovative leaf trait estimation techniques emerged in 

recent years, such as imaging spectroscopy (Serbin et al., 2015), sun-induced fluorescence (Zhang et al., 2018), and plant 495 

optimization theory (Walker et al., 2017; Wang et al., 2017). Second, BESS-STAIR in this study uses CDL data which is 

only available in United States. Fortunately, BESS does not require specific crop types but only C3/C4 distributions, and the 

separation of the major C4 crop maize from other crops is practical using time-series satellite data (Cai et al., 2018; Zhong et 

al., 2016). It is noted that misclassification of C4 and C4 crops are likely to cause large bias in GPP, but relatively small bias 

in ET (Fig. A1 – A3). 500 

 

Though BESS-STAIR is able to capture water stress impact on ET in the U.S. Corn Belt where atmospheric demands play a 

major role, its applicability to regions where soil supply dominates needs further investigation. Some studies suggest that 

optical signal as an indicator of drought performs at a longer time scale than thermal signal does (Otkin et al., 2017). 

Drought first decreases soil moisture content due to enhanced ET induced by high atmospheric demand, then decreases ET 505 
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due to low soil moisture content, and finally causes damage to plants which changes surface reflectance. Accordingly, LAI 

may not serve as a relevant early warning of droughts. Furthermore, severe soil moisture stress may cause physiological 

deterioration in addition to structural damage that has been reflected in LAI. To address this issues for dry regions, we 

acknowledge that LST observations may provide essential adding values. At this point, the capacity of BESS-STAIR in 

estimating LST leads to a possibility of optimizing BESS-STAIR using satellite-derived LST. Recent advances of innovative 510 

thermal observation platforms such as ECOSTRESS (Hulley et al., 2017), GOES-R (Schmit et al., 2017), and Sentinel-3 

(Zheng et al., 2019) have provide great opportunity to integrate satellite-derived LST with the BESS-STAIR.  

 

The BESS model itself in essence estimates instantaneous ET. The ratio of snapshot potential solar radiation to daily 

potential solar radiation is adopted as a scaling factor for the temporal upscaling of ET (Ryu et al., 2012). In this study, 515 

BESS runs two times per day, utilizing radiation components derived from Terra/MODIS (around 11:00 AM) and 

Aqua/MODIS (around 1:00 PM) data, respectively. The two instantaneous ET estimates are separately upscaled to daily 

estimates and averaged. In spite of robustness of the upscaling algorithm (Ryu et al., 2012), bias cannot be avoided if the sky 

conditions at two overpass times are not representative for that day, which is natural and common in the presence of moving 

cloud. Since BESS is a time-independent model and can perform at any time during daytime, adding more snapshots to 520 

account for the diurnal variations of radiation can solve this problem. Unfortunately, fine-resolution polar-orbiting satellite 

usually have similar overpass times (10:00 AM – 11:00 AM and 1:00 PM – 2:00 PM), so even adding more satellites is 

likely to bring redundant information only. Reanalysis radiation data covering diurnal cycle have limited accuracy and 

coarse resolution (Babst et al., 2008; Zhang et al., 2016b), so they may be unable to provide much added values as well. 

Next-generation geostationary satellites, acquiring data with both high spatial and high temporal resolutions such as GOES-525 

R and GaoFen-4 (Goodman et al., 2012; Xu et al., 2017), are expected to enable BESS-STAIR ET in hourly or sub-hourly 

interval and subsequently generate more realistic daily ET estimates. 

 

5 Conclusions  

In this study we presented BESS-STAIR, a new framework to estimate high spatiotemporal resolution ET that can be used 530 

for field-level precision water resources management. BESS-STAIR couples a satellite-driven water-energy-carbon coupled 

biophysical model BESS with a generic and fully-automated fusion algorithm STAIR to generate gap-free 30-m resolution 

daily ET estimations. Comprehensive evaluation of BESS-STAIR ET estimations revealed: 1) reliable performance over 12 

flux tower sites across the U.S. Corn Belt, and 2) reasonable spatial patterns, seasonal cycles and interannual dynamics. The 

proposed BESS-STAIR framework has demonstrated its ability to provide significant advancements with regard to daily 535 

field-level estimations of ET at regional and decadal scales. We expect BESS-STAIR to become a solid tool for precision 

water resources management and other precision agriculture applications for the U.S. Corn Belt as well as other agricultural 

areas around the world, thanks to the global coverage of input data. 
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Appendix  

 
Figure A1. Time series of monthly mean LE from flux tower measurements and BESS-STAIR estimations. 565 

 

 
Figure A2. Time series of monthly mean GPP from flux tower measurements and BESS-STAIR estimations. Significant 

underestimations in 2003 and 2011 for Ne1, in 2005 for Ne2, and in 2005 for Ne3 are due to misclassification of corn as 

soybean in CDL. Significant overestimations in 2006 for Ne2 are due to misclassification of soybean as corn in CDL. 570 
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Figure A3. Time series of monthly mean Rn from flux tower measurements and BESS-STAIR estimations. 
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